Chapter 3– Block Ciphers and Data Encryption Standard

Modern Block Ciphers

- will now look at modern block ciphers
- one of the most widely used types of cryptographic algorithms
- provide secrecy and/or authentication services
- in particular will introduce DES (Data Encryption Standard)

Block vs Stream Ciphers

- block ciphers process messages in into blocks, each of which is then en/decrypted
- like a substitution on very big characters
 - 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- hence are focus of course

Block Cipher Principles

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block

- instead create from smaller building blocks
- using idea of a product cipher

Claude Shannon and Substitution-Permutation Ciphers

- in 1949 Claude Shannon introduced idea of substitution-permutation (S-P) networks
 - modern substitution-transposition product cipher
- these form the basis of modern block ciphers
- S-P networks are based on the two primitive cryptographic operations we have seen before:
 - substitution (S-box)
 - permutation (P-box)
- provide confusion and diffusion of message

Confusion and Diffusion

- needs to completely obscure statistical properties of original cipher message
- a one-time pad does this
- more practically Shannon suggested combining elements to obtain:
- diffusion dissipates statistical structure of plaintext over bulk of ciphertext
- confusion makes relationship between ciphertext and key as complex as possible.

Feistel Cipher Structure

- Horst Feistel devised the **feistel cipher**
 - based on concept of invertible product cipher
- partitions input block into two halves
 - process through multiple rounds which
 - perform a substitution on left data half
 - based on round function of right half & subkey
 - then have permutation swapping halves
- implements Shannon's substitution-permutation network concept.

Feistel Cipher Design Principles

block size

- increasing size improves security, but slows cipher

key size

 increasing size improves security, makes exhaustive key searching harder, but may slow cipher

number of rounds

- increasing number improves security, but slows cipher

subkey generation

- greater complexity can make analysis harder, but slows cipher

round function

greater complexity can make analysis harder, but slows cipher

fast software en/decryption & ease of analysis

are more recent concerns for practical use and testing.

Data Encryption Standard (DES)

- · most widely used block cipher in world
- adopted in 1977 by NBS (now NIST)
 - as FIPS PUB 46
- encrypts 64-bit data using 56-bit key
- has widespread use
- has been considerable controversy over its security.

DES Encryption

Initial Permutation IP

- first step of the data computation
- IP reorders the input data bits according to IP.
- example:
 IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \text{ xor } F(R_{i-1}, K_i)$$

- takes 32-bit R half and 48-bit subkey and:
 - expands R to 48-bits using perm E

- adds to subkey
- passes through 8 S-boxes to get 32-bit result
- finally permutes this using 32-bit perm P

DES Round Structure

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
 - outer bits 1 & 6 (**row** bits) select one rows
 - inner bits 2-5 (col bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
 - feature known as autoclaving (autokeying)
- example: $S(001100)_2=(1010)_2$

DES Key Schedule

- · forms subkeys used in each round
- consists of:
 - initial permutation of the key (PC1) which selects 56-bits in two
 28-bit halves
 - 16 stages consisting of:
 - rotating **each half** separately either 1 or 2 places depending on the **key rotation schedule** K
 - permuting them by PC2 for use in function f.

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again
- using subkeys in reverse order (SK16 ... SK1)
- note that IP undoes final FP step of encryption
- 1st round with SK16 undoes 16th encrypt round
- 16th round with SK1 undoes 1st encrypt round
- then final FP undoes initial encryption IP
- thus recovering original data value.

Table 3.2 Permutation Tables for DES

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (\mathbf{IP}^{-1})

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

(d) Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Table 3.3 Definition of DES S-Boxes

								_	-							_
	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
\mathbf{s}_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
s_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
-2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
				<u> </u>	. 353	- 25	0/(-0)		- 33			250				
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
s_3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
																-
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
s_4	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
S ₅	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
5	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	10	14	2	13	6	15	0	9	10	4	5	3
												<u> </u>				
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
s_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
s_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
s_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
28	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
	2	11	14	7	4	10	8	13	15	12	9	0	3	5	6	11
	2	1	14	1	4	10	0	13	13	12	9	U	3	3	U	11

Note to compositor: get entire table on one page.

Table 3.4 DES Key Schedule Calculation

(a) Input Key

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

(b) Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

(d) Schedule of Left Shifts

Round number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Avalanche Effect

- key desirable property of encryption algorithm.
- where a change of one input or key bit results in changing approx half output bits
- making attempts to guess keys impossible.
- DES exhibits strong avalanche.

Table 3.5 Avalanche Effect in DES

(a) Chan	ge in Plaintext	(b) Change in Key
Round	Number of bits that differ	Number of bits Round that differ
0	1	0 0
1	6	1 2
2	21	2 14
3	35	3 28
4	39	4 32
5	34	5 30
6	32	6 32
7	31	7 35
8	29	8 34
9	42	9 40
10	44	10 38
11	32	11 31
12	30	12 33
13	30	13 28
14	26	14 26
15	29	15 34
16	34	16 35

Strength of DES – Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- brute force search looks hard
- recent advances have shown is possible
 - in 1997 on Internet in a few months
 - in 1998 on dedicated h/w (EFF) in a few days
 - in 1999 above combined in 22hrs!
- now considering alternatives to DES.